W pewnym trójkącie równoramiennym największy kąt ma miarę 120°, a najdłuższy bok ma długość 12 (zobacz rysunek).Zadanie pochodzi z:http://oblicz.com.pl http://akademia-matematyki.edu.pl/Po dwukrotnej obniżce, za każdym razem o 10% w stosunku do ceny obowiązującej w chwili obniżki, komputer kosztuje 1944 złot Poniżej znajduje się arkusz maturalny z matematyki (matura podstawowa – czerwiec 2016). Jest to arkusz interaktywny, co oznacza że możesz na nim zaznaczać odpowiedzi, otrzymując na koniec nie tylko wynik, ale także wskazanie poprawnych i błędnych odpowiedzi. Jeżeli chcesz tylko przejrzeć zadania z pełnymi rozwiązaniami krok po Zadanie 32. (0–1) Korzystanie z informacji Na podstawie źródła informacji oraz własnej wiedzy opisanie i wyjaśnienie zdarzeń, zjawisk i procesów (II 1.f.7) Poprawna odpowiedź: W kolejności: rudy żelaza, węgiel kamienny, ropa naftowa 1 p. – za wpisanie nazw trzech właściwych surowców Zadanie 33. (0–2) a) (0–1) Rozwiązanie zadania 11. Matura z matematyki, CKE czerwiec 2012. Poziom rozszerzonyTreść zadania: podstawą ostrosłupa jest trójkąt równoramienny, w którym .. Matura Czerwiec 2012, Poziom Rozszerzony (Arkusze CKE), Formuła od 2005 - Zadanie 4. (2 pkt) Zadania zamknięte (Prawda/Fałsz, Tak/Nie, testowe itd.) Przy użyciu mikroskopu świetlnego przeprowadzono obserwacje przyżyciowe dwóch preparatów mikroskopowych w celu zaobserwowania zjawiska plazmolizy. Na szkiełku podstawowym umieszczono http://akademia-matematyki.edu.pl/ Ramię trapezu równoramiennego ABCD ma długość √26. Przekątne w tym trapezie są prostopadłe, a punkt ich przecięcia Mpjz. medicinemylove Posty: 22 Rejestracja: 20 lis 2011, o 09:40 Matura czerwiec 2012 pyt 32 W latach 90. ubiegłego wieku oznaczono sekwencję ponad 10 000 par zasad DNA pseudogenu hemoglobiny (niefunkcyjny odcinek DNA będący duplikatem genu hemoglobiny), który wcześnie pojawił się w ewolucji naczelnych. W tabeli przedstawiono różnice (w %) miedzy sekwencjami nukleotydowymi pseudogenu hemoglobiny orangutana (Pongo), goryla (Gorilla), szympansa (Pan) i człowieka (Homo). Hominidy Gorilla Pan Homo Orangutan (Pongo) 3,39 3,42 3,30 Goryl (Gorilla) 1,82 1,69 Szympans (Pan) 1,56 Ustal, który z rodzajów hominidów jest najbliżej spokrewniony z szympansem (Pan), a który z nim spokrewniony jest najdalej, i uzupełnij zdanie poniżej. Odpowiedź uzasadnij. Najbliżej spokrewniony z szympansem (Pan)) jest ., a najdalej z nim spokrewniony jest . Uzasadnienie Pomocy! Jak rozwiązać to zadanie Paincake Posty: 2 Rejestracja: 21 kwie 2012, o 20:17 Re: Matura czerwiec 2012 pyt 32 Post autor: Paincake » 22 lut 2013, o 18:00 Właśnie rzuciłem okiem na to zadanie i widzę, że ta tabelka dość mało przejrzysta jest. Ale do odpowiedzi: Najbliżej spokrewniony z szympansem jest człowiek, a najdalej orangutan. Z analizy tabeli wynika, że różnice między pseudogenem hemoglobiny człowieka i szympansa są najmniejsze, a szympansa i orangutana największe. 10 Odpowiedzi 7902 Odsłony Ostatni post autor: mathiej 16 paź 2013, o 20:29 4 Odpowiedzi 16588 Odsłony Ostatni post autor: mdloo 5 maja 2018, o 19:14 1 Odpowiedzi 3419 Odsłony Ostatni post autor: Seeba 10 lut 2014, o 08:31 0 Odpowiedzi 7726 Odsłony Ostatni post autor: Artistide 10 kwie 2018, o 19:19 3 Odpowiedzi 7417 Odsłony Ostatni post autor: Black_W 26 kwie 2016, o 21:49 Kto jest online Użytkownicy przeglądający to forum: Obecnie na forum nie ma żadnego zarejestrowanego użytkownika i 1 gość (4 pkt.) Punkty $A=(2,11)$, $B=(8,23)$, $C=(6,14)$ są wierzchołkami trójkąta. Wysokość trójkąta poprowadzona z wierzchołka $C$ przecina prostą $AB$ w punkcie $D$. Oblicz współrzędne punktu $D$. ROZWIĄZANIE: Zapiszmy plan działania: - wyznaczamy prostą $AB$ - wyznaczamy prostą prostopadłą do $AB$, przechodzącą przez punkt $C$ - będzie to równanie prostej zawierającej wysokość - z wyznaczonych prostych robimy układ równań - rozwiązując go wyznaczymy punkt $D$ Krótko i na temat:-) Na początek prosta $AB$, czyli prosta przechodząca przez punkt $A=(2,11)$ i $B=(8,23)$. Współrzędne tych punktów wstawiamy do wzoru z tablic lub do ogólnego równania prostej:\[y=ax+b.\]Oczywiście pierwsze współrzędne podanych wyżej punktów to iksy, drugie współrzędne to igreki:\[\left\{\begin{matrix}11=2a+b\\23=8a+b\end{matrix}\right.\]Trzeba rozwiązać - np. metodą przeciwnych współczynników - jedno z równań pomnożymy przez $-1$:\[\left\{\begin{matrix}-11=-2a-b\\23=8a+b\end{matrix}\right.\]A następnie dodamy je stronami:\[-11+23=-2a+8a\]\[12=6a\]\[a=2.\]Mając już współczynnik $a$, wyznaczymy $b$, przykładowo z pierwszego równania:\[11=2a+b\]\[11=2\cdot 2+b\]\[11=4+b\]\[b=7.\]Prosta $AB$ ma więc równanie:\[y=2x+7.\] Teraz kolej na prostą prostopadłą do $AB$, przechodzącą przez punkt $C$. Nowa prosta musi mieć współczynnik kierunkowy taki, by: \[a_1\cdot a_2=-1\]Tak więc:\[2\cdot a_2=-1\]\[a_2=-\frac{1}{2}.\]Będzie mieć wtedy równanie\[y=-\frac{1}{2}x+b\]Oczywiście, jeśli prosta ma przechodzić przez punkt $C=(6,14)$, musimy wstawić współrzędne punktu do równania prostej:\[14=-\frac{1}{2}\cdot 6+b\]\[14=-3+b\]\[b=17.\] Prosta zawierająca wysokość, wypuszczoną z wierzchołka $C$ ma równanie: \[y=-\frac{1}{2}x+17.\] Przejdźmy do ostatniego podpunktu naszego planu, czyli do wyznaczenia współrzędnych punktu $D$. W tym celu rozwiążemy układ równań:\[\left\{\begin{matrix}y=2x+7\\y=-\frac{1}{2}x+17\end{matrix}\right.\]Skoro lewe strony równania muszą być sobie równe, to i prawe:\[2x+7=-\frac{1}{2}x+17\]\[2x+\frac{1}{2}x=17-7\]\[2,5x=10\]\[x=4\]Oczywiście $y$ można wyznaczyć z któregoś z równań układu - weźmy pierwsze \[y=2x+7\]\[y=2\cdot 4+7\]\[y=8+7\]\[y=15\]Współrzędne punktu $D$ to wyliczone przez nas wartości $x$ i $y$:\[D=(4,15).\]ODPOWIEDŹ: Punkt $D$ ma współrzędne $D=(4,15)$. Zadanie domowe: (4 pkt.) Punkty $A=(2,11)$, $B=(8,23)$, $C=(6,14)$ są wierzchołkami trójkąta. Wysokość trójkąta poprowadzona z wierzchołka $A$ przecina prostą $BC$ w punkcie $E$. Oblicz współrzędne punktu $E$. Opublikowane w przez Matura czerwiec 2012 zadanie 32 Punkty A=(2,11), B=(8,23), C=(6,14) są wierzchołkami trójkąta. Wysokość trójkąta poprowadzona z wierzchołka C przecina prostą AB w punkcie D. Oblicz współrzędne punktu A=(2,11), B=(8,23), C=(6,14) są wierzchołkami trójkąta. Wysokość trójkąta poprowadzona z wierzchołka C przecina prostą AB w punkcie D. Oblicz współrzędne punktu dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura czerwiec 2012 zadanie 33 Oblicz, ile jest liczb naturalnych pięciocyfrowych, w zapisie których nie występuje zero, jest dokładnie jedna cyfra 7 i dokładnie jedna cyfra wpis Matura czerwiec 2012 zadanie 31 Dany jest romb, którego kąt ostry ma miarę 45°, a jego pole jest równe 502–√. Oblicz wysokość tego rombu. Matura czerwiec 2017 zadanie 32

matura czerwiec 2012 zad 32